skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Melton, Genevieve"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract When building predictive models for real-world applications, many data are discarded because conventional learning algorithms cannot utilize it, although such data could be very informative. This paper focuses on representation learning using two types of additional data: privileged information (PI) and unlabeled data. PI refers to data available only during training but not at test time. Existing methods transfer the knowledge embedded in PI via supervised mechanisms, making them unable to use unlabeled data. In contrast, self-supervised learning methods can use unlabeled data but cannot learn from PI. While these techniques appear complementary, as we demonstrate, combining them is non-trivial. This paper introduces the privileged information regularized (PIReg) self-supervised learning framework, which utilizes both PI and unlabeled data to learn better representations. 
    more » « less